Product Code Database
Example Keywords: resident evil -netbooks $24-145
   » » Wiki: Matrix Addition
Tag Wiki 'Matrix Addition'.
Tag

Matrix addition
 (

 C O N T E N T S 
Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

In , matrix addition is the operation of adding two matrices by adding the corresponding entries together.

For a , \vec{v}\!, adding two matrices would have the geometric effect of applying each matrix transformation separately onto \vec{v}\!, then adding the transformed vectors.

\mathbf{A}\vec{v} + \mathbf{B}\vec{v} = (\mathbf{A} + \mathbf{B})\vec{v}\!


Definition
Two matrices must have an equal number of rows and columns to be added.Elementary Linear Algebra by Rorres Anton 10e p53 In which case, the sum of two matrices A and B will be a matrix which has the same number of rows and columns as A and B. The sum of A and B, denoted , is computed by adding corresponding elements of A and B:

\begin{align}
\mathbf{A}+\mathbf{B} & = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} \\
     
\end{bmatrix} +

\begin{bmatrix}

b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m1} & b_{m2} & \cdots & b_{mn} \\
     
\end{bmatrix} \\ & = \begin{bmatrix}
a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\
     
\end{bmatrix} \\

\end{align}\,\! Or more concisely (assuming that ):

c_{ij}=a_{ij}+b_{ij}

For example:

 \begin{bmatrix}
   1 & 3 \\
   1 & 0 \\
   1 & 2
 \end{bmatrix}
     
+
 \begin{bmatrix}
   0 & 0 \\
   7 & 5 \\
   2 & 1
 \end{bmatrix}
     
=
 \begin{bmatrix}
   1+0 & 3+0 \\
   1+7 & 0+5 \\
   1+2 & 2+1
 \end{bmatrix}
     
=
 \begin{bmatrix}
   1 & 3 \\
   8 & 5 \\
   3 & 3
 \end{bmatrix}
     

Similarly, it is also possible to subtract one matrix from another, as long as they have the same dimensions. The difference of A and B, denoted , is computed by subtracting elements of B from corresponding elements of A, and has the same dimensions as A and B. For example:

\begin{bmatrix}
1 & 3 \\
1 & 0 \\
1 & 2
     
\end{bmatrix} - \begin{bmatrix}
0 & 0 \\
7 & 5 \\
2 & 1
     
\end{bmatrix} = \begin{bmatrix}
1-0 & 3-0 \\
1-7 & 0-5 \\
1-2 & 2-1
     
\end{bmatrix} = \begin{bmatrix}
1 & 3 \\
-6 & -5 \\
-1 & 1
     
\end{bmatrix}


See also


Notes


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time